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1. Introduction

We explore the optimal congestion tolling problem under the framework of system opti-
mal Markovian traffic assignment. The Markovian traffic equilibrium (MTE) was initially
proposed by Baillon and Cominetti (2008) for the analysis of the traffic equilibrium assum-
ing that drivers make route decisions on the basis of sequential choices of links leading to
his/her destination. When the recursive logit route choice model (Fosgerau et al., 2013) is
employed, the MTE is equivalent to the logit Markovian assignment developed by Akamatsu
(1996). The MTE therefore belongs to a broader class of equilibrium assignment models that
can incorporate different types of discrete choice model for sequential (link) choice decisions
that constitute a route choice without enumerating route alternatives.

Baillon and Cominetti (2008) introduced an equivalent optimization problem to the MTE
and proposed efficient solution algorithms to solve the problem. Their work is the motivation
for a novel optimal congestion tolling and its computation method proposed in this study.
We theoretically analyze the optimal congestion tolling and system optimization under the
MTE. The system optimum property and its relevance to congestion tolling (i.e., first-
best tolling) was analyzed by Yang (1999) under the logit-based stochastic user equilibrium
(SUE) by formulating a network-level utility. With analogy to Yang’s approach, we prove
that the first-best link toll under the MTE with a logit-based link choice model is identical
to marginal-cost tolling for all links, which would be the same result as in the case of the
logit-based SUE proved by Yang (1999).

Variables used in the analysis are summarized in Table 1.
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Table 1: List of variables

G = (N,A) network setting (N is the set of nodes, A is the set of links)
Gd sub-network that can be used by the users travelling towards destination d (Gd = (Nd

∪
d,Ad)

aij ∈ A link from node i to node j
d ∈ D destination node (D ∈ N)
βi dispersion parameter at node i
ε error term
m traveler m ∈ M
vm instantaneous utility of traveler m
V d
m(j) value function to destination d when traveler m is at node j

tij travel cost from node i to node j
t̃ij perceived travel time cost including random variables
τj downstream travel cost at node j

φd
i expected downstream utility of node i; i.e., E

(
mina∈A+

i

[
zda + εda

])
zdij total cost from node i to destination d (tij + τj)

P d
ij probability that a traveler at node i chooses node j

a ∈ A state link
k ∈ A action link
xdij link traffic volume whose destination is d on link a (node i → node j)

nd
i node traffic volume whose destination is d on node i

gdi demand vector originating in node i towards d
wij aggregated link traffic volume for each destination d ∈ D
sij link cost function
k number of iterations of the fixed point algorithm
α step size of the fixed point algorithm
A+

i outgoing links at node i
A−

i entering links at node i
U traveler’s benefit
TC total cost
MC marginal cost
Ca capacity of link a
t0 free travel time
λi Lagrange multiplier at node i
δin dummy variable when the node is the initial node
δtem dummy variable when the node is the terminal node

t̄a (va) ta (va) + t̂a (va), where t̂a (va) = va · ∂ta(va)
∂va
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2. MTE

According to Baillon and Cominetti (2008), the MTE is defined as the solution to the
following fixed point problem (Eqs. (1)) with respect to the variables

(
wij, tij, z

d
i , x

d
ij, n

d
i

)
.

MTE :



tij = sij(wij) ∀(i, j) ∈ A

zdi = tij + τ dj ∀i ∈ Nd, d ∈ D

τ di = φd
i (tij + τ dj ) ∀i ∈ Nd, d ∈ D

nd
i = gdi +

∑
k∈N−

d (i) x
d
ki ∀i ∈ Nd, d ∈ D

xd
ij = nd

iP
d
ij ∀(i, j) ∈ Ad, d ∈ D

wij =
∑

d∈D,(i,j)∈Ad
xd
ij ∀(i, j) ∈ A

(1)

Further, the MTE is formulated as an equivalent minimization problem as shown in Eq. (2).

min
t

ϕ(t) ≜
∑
ij∈A

∫ tij

0

s−1
ij (z)dz −

∑
d∈D

gdi τ
d
i (t) (2)

It is possible to set up the dual problem as expressed in Eq. (3).

min
(w,x)∈V

∑
i,j∈A

∫ wij

0

sij(z)dz −
∑
d∈D

χd
(
xd
)

where χd
(
xd
)
= − sup

zd

∑
ij∈A

(
φd
i

(
zd
)
− zdj

)
xd
ij

(3)

3. System Optimum Congestion Tolling

We formulate the optimal congestion tolling problem as a system optimum problem
under the Markovian assumption of drivers’ route choice behavior. More specifically, the
link choices of drivers at each node i towards destination d are determined by a multinomial
logit model with a node specific dispersion parameter θdi with the consideration of tolling for
all links in the network. This fundamental idea is in line with Yang (1999), who analyzed
system optimum congestion tolling under a path-based logit SUE. Likewise, we assume that
the net economic benefit for all drivers under the MTE can be measured as the traveler’s
total gross benefit minus the total cost (i.e., U − TC). The Markovian system optimal
problem is then formulated as the maximization problem of the objective function (U−TC)
with respect to the flow conservation at each node as follows.
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Markovian System Optimal� �

maximize : Z(x) = −
∑
d∈D

∑
i≠d

1

θdi

 ∑
ij∈A+

i

xd
ij ln

(
xd
ij

)
−

 ∑
ij∈A+

i

xd
ij

 ln

 ∑
ij∈A+

i

xd
ij


−

∑
i,j∈A

tij (wij) · wij

subject to : gdi +
∑

k∈N−
d (i)

xki =
∑
ij∈A+

i

xij

xd
ij ≥ 0

∀d ∈ D

∀(i, j) ∈ A

(4)

� �
The objective function of the above-mentioned problem is strictly convex and the con-

straints form a non-empty convex set. There therefore exists a unique optimal solution in the
feasible set. The Karush–Kuhn–Tucker conditions for any xij are thus sufficient to obtain
the solution. The Lagrangian of the Markovian system optimal problem reads as follows.

1

θdi
(1 + lnxij)−

1

θdi

1 + ln

 ∑
j′∈A+

i

xij′

+ Tij +
∑
ij∈A

(λiδterm − λjδin) = 0

d ∈ D, (i, j) ∈ A

(5)

The number of Lagrange multipliers is equal to number of nodes because there are
constraint conditions at each node. We additionally define the variable Tij according to Eq.
(6).

Tij :=
∑

(i,j)inA

tij(wij)δij,d

=
∂
∑

ij∈A tij (xij)xij

∂xij

= tij (xij) +
∂tij (xij)

∂xij

xij

= tij (xij) +MCij

(6)

To transform Eq. (5), the link choice probability is finally reformulated as Eq. (7).
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P d
ij =

xij∑
ij∈A xij

=
exp

(
−θdi

(
Tij − 1

θdi
ln
(∑

j′∈A+
i
e
−θdi z

′d
j′
)))

∑
ij∈A exp

(
−θdi

(
Tij − 1

θdi
ln
(∑

j′∈A+
i
e
−θdi z

′d
j′ )
)))

=

exp

(
−θdi

(
txij

+MCij + τ ′j
))

∑
ij∈A exp

(
−θdi

(
txij

+MCij + τ ′j
)) , d ∈ D

(7)

Equation (7) is similar to the link choice probability in the MTE. This indicates that, from
the viewpoint of maximizing social welfare, user externality exists in the system optimality
conditions. Therefore, by imposing a marginal-cost toll at each link exactly equal to the
externalities, we can ensure that the users’ optimal private choices are also socially optimal
in terms of the maximization of net economic benefit. Consequently, the classical principle
of traditional marginal-cost pricing is still applicable in the MTE situation. This conclusion
coincides with the findings by Yang (1999) for optimal link tolls under a logit-based SUE.

4. Numerical Examples

We demonstrate the properties of our theoretical derivation using the Nguyen–Dupuis
network and the Chicago Sketch network. For brevity, only the former result is discussed.
Unlike the method of successive average used in Baillon and Cominetti (2008), we propose a
novel computational method based on the value iteration approach by referring to Mai et al.
(2015) to numerically obtain the fixed point with or without optimal congestion tolling.

Link cost functions are given by the standard function of the Bureau of Public Roads
written as Eq. (8).

ta = t0a

[
1 + 0.15

(
xa

Ca

)4
]
, a = 1, 2, ...19 (8)

Table 2 and Figure 1 present the assignment results. We note that the dispersion parameters
are set in inverse proportion to the link length, and the range is set as 0.5 ≤ θdi ≤ 1.0,∀i, d.

Table 2: Comparison of MTE-UE/MTE-SO (Nguyen–Dupuis network)

MTE-UE MTE-SO MTE-UE/MTE-SO

Total travel time (min.) 78,112 72,694 1.07
Traveler’s benefit (min.) 2,244 2,538 0.88
Social benefit (min.) -75,868 -70,156 1.08
Total revenue (min.) 0 82,450 -
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Figure 1: Assignment result of MTE-UE/MTE-SO (Nguyen–Dupuis network)

Comparing MTE-UE and MTE-SO, the improvement in social benefit achieved by impos-
ing marginal cost is confirmed. The traveler’s route choice has more variance in MTE-SO. As
a result, the traffic congestion may be alleviated and the total travel time could be reduced,
leading to an increase in social welfare.

5. Conclusions and Future Works

This study proved that the classical principle of marginal-cost pricing still holds under
the Markovian route choice framework from the viewpoint of maximizing social benefit. We
further numerically demonstrated the property of the theoretical derivation with the novel
and efficient computational approach. The proposed congestion tolling scheme, however,
is is formulated in the framework of the static traffic assignment which is insufficient to
alleviate the propagation of traffic congestion. Such extension to the dynamic setting is
important future work.
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